Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors.

نویسندگان

  • G H Mitchell
  • T J Hadley
  • M H McGinniss
  • F W Klotz
  • L H Miller
چکیده

Plasmodium falciparum malaria parasites with different capabilities of invading sialic acid-deficient erythrocytes were identified. Thai-2 parasites cultured in Tn erythrocytes invaded neuraminidase-treated and Tn erythrocytes twice as efficiently as Thai-2 parasites cultured in normal erythrocytes and seven to ten times more efficiently than a cloned line of Camp parasites cultured in normal erythrocytes. All three parasite lines required sialic acid for optimal invasion, but Thai-2 parasites cultured in Tn erythrocytes invaded neuraminidase-treated erythrocytes with 45% efficiency whereas Camp parasites invaded neuraminidase-treated erythrocytes with less than 10% efficiency. P falciparum malaria parasites probably possess two receptors: one that binds to a sialic acid-dependent ligand and another that binds to a sialic acid-independent ligand. Parasites may differ in the quantity or affinity of their receptors for the sialic acid-independent ligand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A.

Erythrocyte invasion by malaria parasites is mediated by specific molecular interactions. Sialic acid residues of glycophorin A are used as invasion receptors by Plasmodium falciparum. In vitro invasion studies have demonstrated that some cloned P. falciparum lines can use alternate receptors independent of sialic acid residues of glycophorin A. It is not known if invasion by alternate pathways...

متن کامل

A Stem Cell Strategy Identifies Glycophorin C as a Major Erythrocyte Receptor for the Rodent Malaria Parasite Plasmodium berghei

The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many rece...

متن کامل

Receptor-binding residues lie in central regions of Duffy-binding-like domains involved in red cell invasion and cytoadherence by malaria parasites.

Erythrocyte invasion by malaria parasites and cytoadherence of Plasmodium falciparum-infected erythrocytes to host capillaries are 2 key pathogenic mechanisms in malaria. The receptor-binding domains of erythrocyte-binding proteins (EBPs) such as Plasmodium falciparum EBA-175, which mediate invasion, and P falciparum erythrocyte membrane protein 1 (PfEMP-1) family members, which are encoded by ...

متن کامل

Antibodies to reticulocyte binding protein-like homologue 4 inhibit invasion of Plasmodium falciparum into human erythrocytes.

Plasmodium falciparum invasion into human erythrocytes relies on the interaction between multiple parasite ligands and their respective erythrocyte receptors. The sialic acid-independent invasion pathway is dependent on the expression of P. falciparum reticulocyte binding protein-like homologue 4 (PfRh4), as disruption of the gene abolishes the ability of parasites to switch to this pathway. We...

متن کامل

Invasion by P. falciparum Merozoites Suggests a Hierarchy of Molecular Interactions

Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor-ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their dependency on these different pathways...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 67 5  شماره 

صفحات  -

تاریخ انتشار 1986